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Abstract
The lateral magnetic confinement of quasi-two-dimensional excitons into wire-
like structures is studied. Spin effects are taken into account and two different
magnetic field profiles are considered, which can be created experimentally
by the deposition of a ferromagnetic stripe on a semiconductor quantum well
with magnetization parallel or perpendicular to the growth direction of the well.
We find that it is possible to confine excitons into one-dimensional (1D) traps.
We show that the dependence of the confinement energy on the exciton wave
vector, which is related to its free direction of motion along the wire direction,
is very small. Through the application of a background magnetic field it is
possible to move the position of the trapping region towards the edge of the
ferromagnetic stripe or even underneath the stripe. The exact position of this
1D exciton channel depends on the strength of the background magnetic field
and on the magnetic polarization direction of the ferromagnetic film.

1. Introduction

Lateral localization of excitons in semiconductor quantum wells has been a focus of theoretical
and experimental research in the last few years. Such one-dimensional traps can be realized,
e.g., by using nonhomogeneous stress to induce a hydrostatic expansion which creates an
energy minimum for the excitons [1]. Another method is to apply 1D spatially varying electrical
potentials in the plane of the quantum well and to use the quantum-confined Stark effect in
order to create a minimum in the exciton effective potential [2–4]. Recent theoretical [5, 6]
studies on exciton confinement have shown the feasibility of achieving exciton trapping by
using circular (two-dimensional) magnetic traps.

Due to recent advances in the design and manufacture of microstructured magnetic
potentials [7], several works have been published on the study of magnetic barriers and magnetic
superlattices. However, the majority of these experimental and theoretical investigations
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study the influence of such magnetic potentials on the properties of charged particles, e.g.,
electrons [8–11].

In this work, we propose a natural extension of such magnetic systems: the confinement
of excitons in linear magnetic traps or magnetic wire structures. This paper is structured as
follows. Section 2 gives a brief description of the magnetic wire structures. The theoretical
model for the description of the exciton motion in a quantum well in the presence of linear
magnetic traps is given in section 3. Discussion of the numerical results follows in section 4.
As an example, we show the results for GaAs/AlxGa1−xAs quantum wells. Finally, a summary
of our results is presented in section 5.

2. Modelling the magnetic wire structures

Magnetic confinement potentials can be created by depositing ferromagnetic stripes on top of
a semiconductor quantum well. An additional external homogeneous magnetic field can be
applied to the system in order to maximize the confinement. A sketch of the experimental
set-up is shown in figure 1(a), and a schematic cross section of the stripe with perpendicular
and in-plane magnetization can be seen on the left and right sides of figure 1(b), respectively.
In this system, only the z-component of the magnetic field is responsible for the magnetic
modulation, and can be calculated through Coulomb’s law [9].

The corresponding equation for the z-component of the magnetic field, assuming a stripe
with magnetization perpendicular to the xy-plane, located at x ∈ (−a/2, a/2), y ∈ (−∞,∞),
and z ∈ (−h/2, h/2), where a (h) is the stripe width (thickness), can be written as follows:

Bz(x) = Ba +
µ0M

2π
[B∗(x, z + h/2) − B∗(x, z − h/2)] (1a)

where

B∗(x, z) =
[

arctan

(
x + a/2

z

)
− arctan

(
x − a/2

z

)]
. (1b)

For a stripe with in-plane magnetization the corresponding result is

Bz(x) = Ba +
µ0M

2π
[B∗(x + a/2, z) − B∗(x − a/2, z)] (1c)

where

B∗(x, z) = 1

2
ln

(
x2 + (z + h/2)2

x2 + (z − h/2)2

)
. (1d)

In the above equations, z is the distance from the centre of the stripe to the middle of the
quantum well, M is the stripe magnetization, and Ba is the uniform applied magnetic field.
The corresponding magnetic field for the stripe with perpendicular (solid curve) and in-plane
(dashed curve) magnetization is shown in figure 1(c). Notice that, in the case of a perpendicular
magnetization, the exciton will experience a positive effective magnetic field underneath the
stripe and a negative one elsewhere as sketched on the left-hand side of figure 1(b) (see also
the solid curve in figure 1(c)). The situation is completely different for the stripe with in-plane
magnetization, where now the effective magnetic field has a negative peak in the region near
the edge of the stripe which corresponds to the direction of M (at x = a/2) and a positive
peak near the other (at x = −a/2) edge (see the right-hand side of figure 1(b) and the dashed
curve in figure 1(c)).
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Figure 1. (a) A sketch of the experimental configuration showing the structural parameters: the
stripe width a, the thickness h, and the distance from the stripe to the middle of the quantum
well d. The applied magnetic field is Ba , the stripe magnetization M, and the well width L.
(b) A schematic cross section of the stripe together with the magnetic field lines for magnetization
perpendicular and parallel to the x-direction. (c) A magnetic field profile corresponding to the
stripe with perpendicular (——) and parallel (- - - -) magnetization. The shaded area shows the
position of the magnetic stripe.

3. Theoretical model

The effective Hamiltonian describing the exciton motion in a quantum well in a nonhomo-
geneous magnetic field, with isotropic electron and heavy-hole effective masses m∗

e and m∗
h,
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respectively, can be written in the following way:

H = H⊥(ze, zh) + W(r, ze, zh) + H 2D(R, r) + Hmz(X) (2a)

where

H⊥(ze, zh) = − h̄2

2m∗
e

∂2

∂z2
e

+ Ve(ze) − h̄2

2m∗
h

∂2

∂z2
h

+ Vh(zh) (2b)

is the Hamiltonian describing the electron and heavy-hole confinement in the quantum well,
i.e., in the z-direction;

W(r, ze, zh) = γ e2

εr
− e2

ε
√
r2 + (ze − zh)2

(2c)

is related to the difference between the 2D and 3D Coulomb interaction and is treated as
a perturbation, where γ is a variational parameter which is chosen such that it minimizes
W(r, ze, zh), as discussed in detail elsewhere [12];

H 2D(R, r) = h̄2

2m∗
e

{
−i

m∗
e

M
∇R − i ∇r +

e

h̄c
A

(
X +

m∗
h

M
x

)
ey

}2

+
h̄2

2m∗
h

{
−i

m∗
h

M
∇R − i ∇r − e

h̄c
A

(
X − m∗

e

M
x

)
ey

}2

− γ e2

εr
(2d)

describes the exciton motion in the xy-plane in a nonhomogeneous magnetic field, which is
described by the vector potential in the Landau gauge A(R) = AY (X)eY . In writing the
above equation, we introduced the exciton relative- and centre-of-mass-motion coordinates,
r = re − rh and R = (m∗

ere + m∗
hrh)/M , respectively, with the total exciton mass

M = (m∗
e + m∗

h). Finally, the last term in equation (2a), i.e.,

Hmz(X) = µB

[
ge,zSe,z − 1

3
gh,zJh,z

]
Bz(X) − 2

3

3∑
i=1

ciSe,iJh,i (2e)

is the Hamiltonian describing the exciton spin interaction with the nonhomogeneous magnetic
field, which is oriented along the z-direction. We consider here that the contribution of the
spin interaction with the in-plane magnetic field is very small and can be neglected [13, 14].
In writing down the above spin Hamiltonian, the adiabatic approximation was used, which
assumes that the relative motion is fast as compared to the centre-of-mass motion. This
allows us to expand the magnetic field to zero order in the relative-motion coordinate [6]. In
equation (2e), µB = eh̄/2m∗

e,‖c is the Bohr magneton, mz = Se,i +Jh,i is the total exciton spin
quantum number, which is related to the electron (Se,i = ±1/2) and heavy-hole (Jh,i = ±3/2)
spin quantum numbers, ci is the spin–spin coupling constant related to the zero-field spin
interaction, and ge,z, gh,z are the z-components of the electron and heavy-hole g-factors,
respectively [14].

Following the approach of Freire et al [5], theH 2D(R, r)Hamiltonian (see equation (2d ))
can be simplified by using a transformation of the wave function analogous to the one used
in the homogeneous magnetic field case, which assumes the existence of an exact integral of
motion, namely the magnetic centre-of-mass momentum [15]:

$mz(R, r, ze, zh) ⇒ exp

[
− ie

h̄c
yAY (X)

]
$mz(R, r, ze, zh). (3)

Further, we can use the adiabatic approximation to expand the vector potential up to the
second order in the relative-motion coordinates, i.e.,

AY

(
X ± m∗

h (e)

M
x

)
= AY (X) ± m∗

h (e)

M
xBz(X). (4)
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Inserting equations (3) and (4) into equation (2d ), the H 2D Hamiltonian can be separated
into relative- and centre-of-mass-motion Hamiltonians, i.e.,

H 2D(R, r) = Hrel(r,R,∇R) + HCM(R)

with

Hrel(r,R,∇R) = −(h̄2/2µ)∇2
r − (γ e2/εr) + u1 + u2

where

u1 = − ieh̄

µc
ξBz(X)x

∂

∂y
− ieh̄

Mc

(
Bz(X)

∂

∂Y

)
x +

ieh̄

Mc

(
∂

∂X
Bz(X) + Bz(X)

∂

∂X

)
y

u2 = e2

2Mc2
Bz(X)2

(
ξ 2M

µ
x2 + r2

) (5)

and HCM(R) = −(h̄2/2M)∇2
R . Here, µ = m∗

em
∗
h/M is the exciton reduced mass, and

ξ = (m∗
h −m∗

e )/M . The procedure used to go from equation (2d ) to equation (5) is analogous
to the one used in our previous work (see equations (1)–(7) in reference [5]) on the trapping
of excitons in circular magnetic traps.

To find the eigenvalues of the Hamiltonian, equation (2a), we use the adiabatic approx-
imation to decouple the exciton centre-of-mass motion, which is slow, from the exciton relative
motion, which is fast. We already assumed that the spin degrees of freedom depend only on
the centre-of-mass coordinates. Thus, the total exciton wave function becomes a product of
the wave function of the decoupled motions:

$mz(R, r, ze, zh) = ϕ(R)*(r)F (ze, zh)Lmz(R). (6)

The energy of the exciton confinement in the quantum well (z-direction), i.e., the eigen-
value of {H⊥(ze, zh)−E⊥}F(ze, zh) = 0, does not depend on the magnetic field and therefore
will not contribute to the magnetic exciton trapping energy. Therefore, this energy does not
have to be calculated explicitly. In order to solve the variational equation ∂-E′/∂γ = 0, with

-E′ = 〈*(r)F (ze, zh)|W(r, ze, zh)|*(r)F (ze, zh)〉
to calculate γ we follow the same procedure as described in our previous work [6].

The eigenvalues and eigenfunctions of the equation for the exciton relative motion
{Hrel(r,R,∇R) − Erel}*(r) = 0 are calculated using a perturbation technique, i.e., all
of the B-dependent terms (see u1 and u2 in equation (5)) are treated as perturbations. A full
discussion of the calculation method for the relative-motion energy is given in reference [5]
and will not be repeated here. The spin energies can be easily calculated. The eigenvalues of
{Hmz(X) − Emz}Lmz(R) = 0 can be written as [6]

Emz = ±1

2
µB

[
(−1)mz+1ge,z + gh,z

]
Bz(X).

In writingEmz , we neglected the terms which do not depend on the magnetic field (±cz/2), and
the terms with cx and cy cancel because of symmetry considerations. The different signs in the
above spin energy are related to the total spin quantum number mz = ±1 (which is connected
with the σ± polarized states) and mz = ±2 (which is related to the dark excitons) [13]. In this
work, the mz = ±2 states will not be considered because they are not optically active.

Finally, we obtain the following Schrödinger-like equation for the exciton centre-of-mass
motion: {

− h̄2

2

d

dX

[
1

Meff (X)

d

dX

]
+ V eff (X) − E

}
ψ(X) = 0. (7a)
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The above equation includes the different eigenvalues for the fast motion which contribute
to an effective potential and also results in a spatially dependent effective mass:

Meff (X)/M =
[

1 − e2µ

h̄2M2c2

αnr
mr

γ 4
Bz(X)2

]−1

(7b)

V eff (X) = h̄2

2Meff (X)
Q2

Y +
e2ζ

2µc2

βnr
mr

γ 2
Bz(X)2

+
eh̄

2µc
ξBz(X)mr ± 1

2
µB

[
(−1)mz+1ge,z + gh,z

]
Bz(X). (7c)

We decoupled the wave function of the centre-of-mass motion assuming that ϕ(R) =
exp(iQYY)ψ(X), where QY is the wave vector of the centre-of-mass motion in the Y -
direction (free direction in the wire). Here, αnr

mr
and βnr

mr
(in units of a∗

B
4 and a∗

B
2, respectively)

are constants related to the relative radial (nr ) and angular (mr ) quantum numbers [5], and
ζ = (m∗

e
2 + m∗

h
2)/M . Notice that in contrast to the case of exciton trapping through 1D

scalar potentials created by an electric field [2], the effective potential for linear magnetic
traps depends on the exciton wave vector QY (see the first term in equation (7c)). The main
contribution for the exciton confinement is given by the last two terms in the effective potential
equation (7c), which are the orbital and spin Zeeman terms, respectively. The latter is a
sensitive function of the exciton g-factor [14]. The diamagnetic contribution for the exciton
effective potential (see second term in equation (7c)) contains the contribution of the well
confinement through the parameter γ , which can be very important for exciton trapping when
the orbital and the spin contribution are negligible, i.e., when the exciton angular momentum
is zero and the exciton g-factor is small [6].

4. Exciton trapping

The trapping energy is defined as the difference in exciton energy for an exciton in a homo-
geneous applied field Ba and the corresponding state in the nonhomogeneous magnetic field.
For our numerical calculations we used the following parameters for the ferromagnetic
stripe: width a = 0.50 µm, thickness h = 0.20 µm, distance from the centre of the
quantum well d = 0.08 µm, and the value of the stripe magnetization corresponding to
iron M = 1740 emu cm−3 [10, 16]. We used for the GaAs/Al0.3Ga0.7As quantum well an
effective mass m∗

e = 0.067m0 for electrons and m∗
h = 0.34m0 for heavy holes (m0 is the

free-space electron mass), and the GaAs dielectric constant ε = 12.53. The different g-factors
are taken from reference [14] and depend on the width of the GaAs quantum well.

The effective potential and the corresponding effective mass for the exciton confinement
(see equations (7c) and (7b), respectively) for the exciton 1s ground state are shown in
figure 2(a) as functions of the centre-of-mass X-coordinate for the stripe with perpendicular
magnetization, and in figure 2(b) for the stripe with in-plane magnetization. In these figures,
we took a quantum well width L = 80 Å, an applied magnetic field Ba = 0.15 T, and spin
quantum numbers mz = −1 (dotted curve) and mz = +1 (dashed curve) for an exciton wave
vector QY = 0 µm−1, and mz = −1 (dashed–dotted–dotted curve), mz = +1 (dashed–dotted
curve) for QY = 5 µm−1. Notice that the effective potentials for QY = 0 and QY = 5 µm−1

are only slightly different, which suggests that the corresponding energies are close to each
other and that the contribution of the QY -dependent term to the exciton confinement potential
(see the first term in equation (7c)) is small. Also notice that for the case of perpendicular
magnetization, the effective potential formz � 0 has two minima near the edge of the magnetic
stripe, which will be the position where the exciton will be magnetically trapped. For the
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Figure 2. The effective potential for the exciton 1s ground state as a function of the centre-of-
mass of the exciton X, in the case of a magnetic stripe with magnetization (a) perpendicular and
(b) parallel to the X-direction. In this figure, the quantum well width is L = 80 Å, the applied
magnetic field Ba = 0.15 T, the total spin quantum numbers mz = −1 (· · · · · ·) and mz = +1
(- - - -) for QY = 0 µm−1, and mz = −1 (— · · —), mz = +1 (— · —) for QY = 5 µm−1. The
corresponding effective mass is also shown (——).

parallel-magnetization case and also for the perpendicular one when mz > 0, the potential
minimum occurs underneath the magnetic stripe and the exciton localizes exactly under the
magnetic stripe. It is worthwhile to point out that for a given magnetization, the exciton spin
interaction with the nonhomogeneous magnetic field can be responsible for a displacement in
the minimum of the effective potential related to the different σ± polarized states, which is
due to a change in the sign of the spin contribution (see the last term in equation (7c)).

The trapping energy of the exciton ground state as a function of the exciton wave vector
QY is shown in figure 3 for an applied field of Ba = 0.15 T and a well width L = 80 Å, for
the stripe with perpendicular (figure 3(a) for mz = +1 and 3(b) for mz = −1) and in-plane
(figure 3(c) for mz = +1 and figure 3(d) for mz = −1) magnetization. The trapping energy has
a parabolic dispersion as expected for free-particle-like motion (see equation (7c)). The effect
of the centre-of-mass momentum QY on the exciton trapping energy is very small. Notice
that the term (h̄2/2M)Q2

Y , which does not depend on the magnetic field, is not included in the
calculation of the trapping energy. Only the contribution due to the nonhomogeneous magnetic
field is shown in figure 3.

Experimentally, it is very useful to control the exciton localization by means of tunable
parameters, e.g., electric and magnetic fields, without the necessity of changing the structural
parameters (e.g., quantum well width). For that purpose, we analysed the dependence of the
exciton trapping energy under the influence of an external applied homogeneous magnetic field
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Figure 3. The contribution of the ground-state exciton trapping energy to the wave vector QY -
dependence for: the stripe with magnetization perpendicular to the X-axis, and spin numbers
(a)mz = +1 and (b)mz = −1; the stripe with parallel magnetization, and spin numbers (c)mz = +1
and (d) mz = −1. The quantum well width L = 80 Å, and the applied magnetic field Ba = 0.15 T.

Ba , which is able to change completely the effective potential responsible for the trapping of
the exciton. Figures 4 and 5 show the exciton trapping energy as a function of the applied field
Ba , for the stripe with perpendicular and in-plane magnetization, respectively, for the exciton
1s ground state. Results are given for quantum well widths L of 50 Å (a), 100 Å (b), and
150 Å (c). The exciton is always trapped in the case of mz = +1, except for a quantum well
width L = 100 Å. The reason is that the corresponding exciton g-factor for this well width
is almost zero [14], which greatly decreases the importance of the spin term in the effective
potential expression (see equation (7c)). This is also the explanation for the large difference in
magnitude (two orders in some cases) of the energy scale for L = 50 and 150 Å as compared
to the L = 100 Å situation.

The trapping energy of the stripe with in-plane magnetization (figure 5) has a completely
different behaviour from that of the one with perpendicular magnetization. First of all,
the energy is an even function of the applied field Ba due to the functional behaviour of
the corresponding nonhomogeneous magnetic field (see the dashed line in figure 1). For
certain quantum well widths there exists also a critical field Ba below which the exciton is
not trapped. Changing the spin quantum number from mz = +1 into mz = −1 drastically
changes the exciton confinement dependence on the quantum well width for both magnetization
directions. Using these results, one can choose an optimal situation in which the effect of the
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nonhomogeneous magnetic field on the exciton confinement is maximal and can be detected
in photoluminescence (PL) experiments. By changing the applied magnetic field strength, one
can modify the position of the line spectra in the PL experiments related to the σ± polarized
states in such a way that only one of them exists (the other will be a dark state), which may
make the effect of the magnetic field on the exciton confinement easier to detect.

Due to the competition between the diamagnetic interaction, the spin interaction, and
the applied magnetic field, the exciton can be confined in different regions of space. This is
illustrated in figures 6 and 7, where we show the wave function for the exciton ground state as
a function of the X-coordinate, for the stripe with perpendicular and in-plane magnetization,
respectively, for spin quantum numbers (a) mz = −1 and (b) mz = +1, and for different values
of the applied field Ba . Notice that there is no confined exciton for the mz = −1 state when
Ba = 0, which is not the case for the mz = +1 state. This can be easily explained by looking
at the corresponding effective potentials (see the dotted curves in the insets of figures 6 and 7).
There is no confinement region for the exciton when mz = −1. Notice that for the mz = −1
(mz = +1) situation (see figures 6(a) and 6(b), respectively), the wave function is located near
the two edges of the ferromagnetic stripe for Ba positive (negative) and underneath the stripe
for Ba negative (positive). For the in-plane-magnetization situation (figure 7), the exciton is
confined at one of the edges of the stripe for mz = −1. Changing the sign of the background
field switches the exciton from one side of the ferromagnetic edge to the other. A similar
behaviour is found for mz = +1 but: (i) the position of the exciton for a given Ba is at the
opposite edge from the one for mz = −1; and (ii) for Ba = 0 T, the exciton is bound and its
wave function is symmetric. This magnetic field dependence is consistent with theBa → −Ba

symmetry of the binding energy (see figure 5).

5. Conclusions

We studied the behaviour of quasi-2D excitons in the presence of 1D magnetic traps. In
this system, the excitons are confined into quantum wire-like states. Such linear magnetic
potentials can be created experimentally by the deposition of a ferromagnetic stripe on top of a
semiconductor quantum well with an additional external magnetic field applied perpendicularly
to the stripe in order to maximize the exciton confinement. In this paper, we studied both
possibilities for the stripe magnetization, i.e., magnetization parallel or perpendicular to the
plane of the quantum well.

The main conclusions can be summarized as follows:

(i) excitons can be trapped by linear magnetic traps;
(ii) the dependence of the confinement energy on the exciton wave vector is small, but the

exciton confinement is very sensitive to its spin orientation; and
(iii) the confinement of excitons in such systems can be controlled by an external tunable

parameter, i.e., an applied magnetic field.

By changing the strength of the magnetic field one can move the confinement region from
underneath the magnetic stripe to its edges or even to one of the edges. For the case of parallel
magnetization, the external magnetic field can move the confinement region from one edge of
the magnetic stripe to the other edge of the stripe. The numerical obtained trapping energies are
rather small but they can be increased substantially if the amplitude of the modulated magnetic
field (see figure 1(c)) is enhanced.

We also showed that the applied magnetic field can make a bright exciton becomes a dark
one. This transformation is very sensitive to the quantum well width, the magnetization of
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Figure 6. The wave function of the exciton ground state as a function of X, for the stripe with
magnetization perpendicular to the X-direction, with spin quantum numbers (a) mz = −1 and
(b) mz = +1. The quantum well width L = 80 Å, the wave vector QY = 0 µm−1, and the applied
magnetic field Ba = −0.15 T (- - - -), Ba = 0 T (· · · · · ·), and Ba = 0.15 T (——). The inset
shows the respective effective potentials.

the magnetic stripe, and the exciton spin contribution, i.e. through the value of the effective
g-factor. Our results can help with the design of experiments to probe the exciton trapping
by giving a very good estimate of the set of parameters for which the confined exciton can
be detected, i.e., where the exciton is actually trapped in the magnetic wire-like confinement
potential. Further, the spatial displacement of the exciton localization as controlled by changing
the external applied magnetic field, from e.g. one edge of the magnetic stripe to the other, can
be used experimentally to detect and analyse the effect of the nonhomogeneous magnetic
field on the exciton motion. Our work is expected to provide useful insights and stimulate
further developments in experimental work involving trapping of excitons in nonhomogeneous
magnetic fields.
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Figure 7. As figure 6, but now the stripe has magnetization parallel to the X-axis.
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